Ill-posedness of the third order NLS equation with Raman scattering term
نویسندگان
چکیده
منابع مشابه
Deformations of third order Peregrine breather solutions of the NLS equation with four parameters
In this paper, we give new solutions of the focusing NLS equation as a quotient of two determinants. This formulation gives in the case of the order 3, new deformations of the Peregrine breather with four parameters. This gives a very efficient procedure to construct families of quasirational solutions of the NLS equation and to describe the apparition of multi rogue waves. With this method, we...
متن کاملOn the ill-posedness of the Prandtl equation
The concern of this paper is the Cauchy problem for the Prandtl equation. This problem is known to be well-posed for analytic data [13, 10], or for data with monotonicity properties [11, 15]. We prove here that it is linearly ill-posed in Sobolev type spaces. The key of the analysis is the construction, at high tangential frequencies, of unstable quasimodes for the linearization around solution...
متن کاملRemarks on the ill-posedness of the Prandtl equation
In the lines of the recent paper [5], we establish various ill-posedness results for the Prandtl equation. By considering perturbations of stationary shear flows, we show that for some linearizations of the Prandtl equation and some C∞ initial data, local in time C∞ solutions do not exist. At the nonlinear level, we prove that if a flow exists in the Sobolev setting, it cannot be Lipschitz cont...
متن کاملOn the Ill-posedness Result for the Bbm Equation
We prove that the initial value problem (IVP) for the BBM equation is ill-posed for data in H(R), s < 0 in the sense that the flow-map u0 7→ u(t) that associates to initial data u0 the solution u cannot be continuous at the origin from H(R) to even D′(R) at any fixed t > 0 small enough. This result is sharp.
متن کاملSharp ill-posedness result for the periodic Benjamin-Ono equation
We prove the discontinuity for the weak L(T)-topology of the flowmap associated with the periodic Benjamin-Ono equation. This ensures that this equation is ill-posed in Hs(T) as soon as s < 0 and thus completes exactly the well-posedness result obtained in [12]. AMS Subject Classification : 35B20, 35Q53.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Research Letters
سال: 2018
ISSN: 1073-2780,1945-001X
DOI: 10.4310/mrl.2018.v25.n5.a5